COMPENSATION OF TOOL FORCES IN SMALL DIAMETER END MILLS

Thomas Dow, Edward Miller, Kenneth Garrard and Alexander Sohn

Precision Engineering Center, North Carolina State University
Thomas Wright
Eastman Kodak Co
• BACKGROUND
 – Tool Diameter less than 1 mm
 – Length from 1-12 mm
 – Needed to create small features in hard steel
SCOPE

- DEVELOP TOOL FORCE MODEL
- DEVELOP TOOL DEFLECTION MODEL
- CREATE COMPENSATION TECHNIQUE
CUTTING/THRUST FORCES
• DRESCHER/ARCONA MODEL
 – Cutting and Thrust forces (friction)
 – Function of tool rotation angle
 – Function of tool geometry

\[
F_c = \frac{HA_c}{3} \left(\frac{\cot \phi}{\sqrt{3}} + 1 \right) + \mu_f A_f \left(0.62 H \sqrt{\frac{43H}{E}} \right)
\]

\[
F_t = \mu \left[\frac{HA_c}{3} \left(\frac{\cot \phi}{\sqrt{3}} + 1 \right) \right] + A_f \left(0.62 H \sqrt{\frac{43H}{E}} \right)
\]
TOOL FORCE COMPONENTS

Local chip thickness

Width of wear land

Up Feed/flute

Cross Feed

Depth of cut

Section A-A
• HIGH SPEED MILL
 – 60,000 rpm
 – Mounted on DTM
 – Position resolution less than 10 nm

• 3-AXIS LOAD CELL
 – X, Y, Z forces
 – Average force over several rotations
FORCE COMPARISON

Transformation

\[r, \theta, z \rightarrow x, y, z \]

Compare

\[F_{\text{cutting}} \text{ and } F_{\text{thrust}} \]

Force, N

angle, deg

\[F_x, F_y, F_z \]

Force, N

angle, deg

x, y, z data
Precision Engineering Center

TOOL FORCES

Upfeed = 10 µm/flute
Depth = 25 µm
Speed = 40,000 rpm

Tool rotation angle, degrees

Force, N

Fx
Fx_exp
Fy
Fy_exp
Fz
Fz_exp
TOOL FORCES

Upfeed = 25 µm/flute
Depth = 100 µm
Speed = 10,000 rpm

Precision Engineering Center
• TOOL DEFLECTION EXPERIMENTS
 – Slot with increasing depth
 – Thrust force reduces depth of cut
 – Stiffness depends on tilt of tool
50 deg tilt (no compensation)

Precise Engineering Center

- Measured depth, µm
- Modeled Depth, µm
- Desired Depth, µm

Depth of Groove, µm vs. Distance, mm
50 deg tilt (compensation)

Precision Engineering Center

![Graph showing measured depth, modeled depth, and desired depth vs distance. The graph includes a legend for measured depth, modeled depth, and desired depth.]
COMPENSATION EXPERIMENT

• Cut 0.5 mm deep groove with 1.5 mm radius ball end mill
• Remove 0.1 mm using 0.4 mm radius ball mill (sweep angle ± 50 deg)
• Compensate for tool deflection in y-z plane
TOOL FORCE DIRECTIONS
Groove with Short Tool

Precision Engineering Center

<table>
<thead>
<tr>
<th>Sweep Angle (deg)</th>
<th>Error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-52</td>
<td>0.005</td>
</tr>
<tr>
<td>-44</td>
<td>0.01</td>
</tr>
<tr>
<td>-36</td>
<td>0.015</td>
</tr>
<tr>
<td>-28</td>
<td>0.02</td>
</tr>
<tr>
<td>-20</td>
<td>0.025</td>
</tr>
<tr>
<td>-12</td>
<td>0.03</td>
</tr>
<tr>
<td>-4</td>
<td>0.035</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
</tr>
<tr>
<td>12</td>
<td>0.045</td>
</tr>
<tr>
<td>20</td>
<td>0.05</td>
</tr>
<tr>
<td>28</td>
<td>0.055</td>
</tr>
<tr>
<td>36</td>
<td>0.06</td>
</tr>
<tr>
<td>44</td>
<td>0.065</td>
</tr>
<tr>
<td>52</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Legend:
- Blue: Measured Groove SA
- Green: Uncompensated Deflection Model
- Red: Measured Groove NCS
Groove - Extra Long Tool

Precision Engineering Center

Error (mm) vs. Sweep Angle (deg)

- Measured Groove NCXL
- Uncompensated Deflection Model
- Measured Groove XLA
Compensated Groove
Extra Long Tool

Precision Engineering Center

![Graph showing error vs sweep angle for Measured Groove NCXL, Measured Groove XLA, and Compensated Data.](Image)
Best Fit Radii (1.6 mm)

Error in the best-fit radius to the machined groove, mm

Tool Stiffness, N/mm

- Uncompensated Error, mm
- Compensated Error, mm
CONCLUSIONS

• CUTTING FORCES ARE PREDICTABLE AND REPEATABLE

• TOOL DEFLECTIONS CAN BE CALCULATED AND COMPENSATED

• OPEN-LOOP MODEL CAN BE USED TO IMPROVE THE SHAPE OF SMALL FEATURES

• LIMITATIONS INVOLVE TOOL SHAPE AND TOOL WEAR